منبع مقاله با موضوع 
فناوری نانو، علوم و فناوری نانو، صنعت خودرو No category

این مونومر قابلیت پلیمر شدن و تبدیل به پلی(وینیل الکل) را ندارد. از این رو، معمولا این پلیمر از واکنش صابونی کردن پلی(وینیل استات) به دست میآید. (Kokabi و همکاران، 2007)،. پلی(وینیل الکل) به دلیل خواص ویژه، نظیر سازگاری با محیط زیست، انحلال پذیری در آب، مقاومت کششی زیاد، مقاومت زیاد در برابر خوردگی در محیطهای قلیایی، نفوذ پذیری کم در برابر گازها و خواص نوری مطلوب در صنایع نساجی، کاغذ سازی، بسته بندی و پزشکی کاربردهای گستردهای دارد (Lyoo و همکاران، 2000). در بسیاری از کاربردهای پلی (وینیل الکل) از جمله در تولید الیاف مصنوعی و همچنین به عنوان پوشش ئر صنایع کاغذسازی، وزن ملکولی آن اهمیت بسیاری دارد. در سایر کاربردها نیز وزن ملکولی به دلیل اثر مستقیم بر خواص فیزیکی و مکانیکی پلیمر مورد توجه قرار میگیرد. (Navarchian و Mousazadeh، 2010)
خصوصیت شیمیایی این پلیمرها، یعنی واکنش پذیری گروههای هیدروکسیل فراوان آنها به شدت به مقدار
گروههای استیل باقی مانده یا درجه هیدرولیز آنها بستگی دارد. به لحاظ تئوری گریدهای به صورت جزیی هیدرولیز شده را میتوان به عنوان مخلوطی از پلیمرهای وینیلالکل و وینیلاستات در نظرگرفت. رابطه بین درجه هیدرولیز و خواص پلیمر منجر به تولید انواع (گریدهای)مختلفی از پلی(وینیل الکل) با خصوصیات متنوع میشود. این تنوع در خواص امکان استفاده از پلی(وینیل الکل) کاربردهای مختلفی را پدید میآورد. یکی از مهمترین کاربردهای این پلیمرها ، استفاده از آنها به عنوان ماتریس در نانوکامپوزیتهای زیست تجزیهپذیر میباشد.
1-2-نانو کامپوزیت
جامد چند فازی است که یک یا چند فاز آن ابعادی در اندازه نانو متر دارد. این امر موجب به منجر به خواص منحصر به فردی در مقایسه به کامپوزیت های مرسوم میشود. خواص بهبود یافته نانو کامپوزیت ها شامل خواص مکانیکی بهتر ، مقاومت شیمیایی بالاتر، کاهش نفوذ گازی، هدایت الکتریکی بالا در میزان کمتری از پر کننده ها در مقایسه با پر کننده های مرسوم و همچنین فرایند پذیری بهتر است. خواص نانوکامپوزیتها به طور قابل ملاحظهای به پرکنندهها بستگی دارد. امروزه نانو کامپوزیتها کاربردهای زیادی مانند کاربرد در مواد الکتریکی، صنعت خودرو، هواپیمایی، بسته بندی، حسگرها، محرکها، رهایی دارو و پوششها و رنگریزهها دارند. برخی نانو کامپوزیت ها که تخریب بیولوژیکی نمیشوند تهدیدی برای طبیعت به شمار میروند. در سالهای اخیر تحقیقات بر روی نانوکامپوزیتهای پلیمری بیولوژیکی که در محیط تجزیه میشوند گسترش یافته است، زیرا آنها ما را از سوختهای فسیلی بینیاز میکنند. در مقابل خواص منحصر به فرد نانوکامپوزیتها ، در ساخت آنها مشکلات فرایندی قابل توجهی وجود دارد که نقش تعیین کنندهای دارند. مهمترین مشکل فرایندی تهیه نانو کامپوزیتها عدم توزیع یکنواخت ذرات نانو در فاز زمینهای و کاهش خواص مکانیکی آن است. یکی از مهمترین روشهای پراکنش ذرات نانو در ماتریس پلیمری قالب ریزی محلول با استفاده از تبخیر حلال آلی یا آبی که به شرح زیر میباشد( Gilberto Siqueiraو همکاران، 2010).
تولید نانوکامپوزیت ها راه کار دیگری برای بهبود خواص کاربردی فیلم های زیست پلیمری است. نانوکامپوزیت ها به کامپوزیت های حاوی پرکننده های تقویت کننده گفته می شود که یکی از ذرات پرکننده آن دارای ابعاد نانومتر باشد. بر اساس شکل هندسی نانوپرکننده، نانوکامپوزیت ها را می توان به سه گروه زیر دسته بندی کرد :
1- کامپوزیت های تقویت شده با ورقه هایی با ضخامت در حد نانومتر مانند نانوخاک های رس
2- کامپوزیت های تقویت شده با لوله ها یا رشته ها ( Whiskers) با قطری در ابعاد نانومتر مانند نانولوله های کربنی، نانوبلور های سلولز و نانوبلور کیتین .
3- نانوکامپوزیت های تقویت شده با ذرات کروی در ابعاد نانومتر که در این گروه به اکسیدهای فلزات در اندازه نانومتر، سیلیکا و کربن می توان اشاره کرد.
1-2-1 قالب ریزی محلول با استفاده از تبخیر حلال آلی یا آبی
این روش متداولتر است و تشکیل شبکه بین ذرات نانو و پلیمر بهتر صورت میگیرد.
بر اساس پلیمر و حلال سه فرایند مختلف در این روش وجود دارد :
استفاده از حلالهای آبی
استفاده از روش امولیسیون
استفاده از حلالهای غیر آبی

شکل1-2 فرایند های پراکنش نانو سلولز در ماتریس پلیمری به روش قالب ریزی محلول Gilberto)و همکاران، 2010)
استفاده از حلالهای آبی:
در این روش حلال واسطه استفاده میشود و پلیمر زمینهای و نانو ذرات در آب حل شده و بعد از تبخیر آب فیلم بدست آمده نانو کامپوزیت سلولزی است.
این روش دو محدودیت دارد: 1- پلیمرهایی که در این روش استفاده میشوند محدود به پلیمرهای آب دوست میشوند. 2- بدلیل اینکه پلیمر آب دوست است ، خارج کردن آب از آن مشکل است که معمولا اینکار تحت شرایط آون خلا باید انجام شود (Gilberto و همکاران، 2010).
استفاده از روش امولسیون:
این روش برای پلیمرهای غیر قطبی مورد توجه است. در این روش نیز از آب به عنوان حلال واسطه استفاده می شود پلیمرهای غیر قطبی در این محیط آبی به صورت امولسیون در میآیند و نانو سلولز به صورت همگن در آب پخش میشود . بعد از تبخیر نانوسلولز میتواند در پلیمر پخش شود که پراکندگی در این روش به خوبی انجام نمیشود و در این روش بیشتر از پلیمرهای نیمه قطبی استفاده میشود (Favier و همکاران ، 1995).
استفاده از حلال های غیر آبی :
در این روش از حلال های آلی استفاده میشود، به همین دلیل پلیمر غیر قطبی پراکندگی بهتری دارند ولی نانو سلولز که ساختار آب دوست دارد نمیتواند براحتی در این محیط پخش شود. برای حل این مشکل اصلاح شیمیایی سطح نانو سلولز را برای کاهش انرژی سطحی و پراکنندگی بهتر پیشنهاد کردند. یکی از ویژیگیهای نانو بلورسلولز که به روش هیدرولیز اسیدی با استفاده از اسید سولفوریک بدست میآید، نشستن گروههای منفی سولفات بر روی گروههای هیدروکسیل نانو بلورسلولز است که باعث پراکندگی بهتر این ذرات میشود نیاز به اصلاح سطحی را کاهش میدهد (Oksman و همکاران، 2006).

1-3-فناوری نانو1 چیست ؟
فناوری نانو عبارت است از روش ها، سیستم ها، ابزارها، مواد و فرایندهایی که در مقیاس نانو(〖10〗^(-9) متر) باشند.هدف علم و فناوری نانو دستیابی به توانایی کنترل ماده در ابعاد نانومتری و بهره برداری از خواص و پدیده های حاصل از این بعد در مواد به وسیله ابزارها و سیستم های نوین است, به عبارت دیگر فناوری نانو مطالعه ذرات در مقیاس نانو برای کنترل خواص آن هاست.
از نظر مقیاس، یک نانو متر برابر قطر 10 اتم هیدروژن و یا 5 اتم سیلسیم می باشد. در مقالات و نوشته های عمومی واژه فناوری نانو گاهی به هر فرایند کوچک تر از اندازه های میکرون اطلاق میگردد. تفاوت اصلی فناوری نانو با فناوری های دیگر در مقیاس مواد و ساختار هایی است که مورد استفاده قرار میگیرند. البته تنها کوچک بودن اندازه مد نظر نیست؛ بلکه زمانی که اندازه مواد در این مقیاس قرار میگیرد، خواص مکانیکی، نوری, الکتریکی و مغناطیسی مواد کاملا متفاوت خواهد بود. (Havancsak و همکاران ،2003)
امروزه فناوری نانو یکی از راههای پیشرفت تکنولوژی و عاملی موثر در رشد اقتصادی کشورها شده است. با بهره گیری از این تکنیک و از طریق کنترل ذرات در حد ابعاد نانو متر می توان ذراتی با خواص شیمیایی, مکانیکی،
نوری، الکتریکی و مغناطیسی بهتر تولید کرد. به طور خلاصه, فناوری نانو به عنوان علوم و مهندسی مواد شامل
طراحی, ساخت و کاربرد مواد و وسایلی که حداقل یک بعد از آنها در حد نانو است, تعریف شده است. فعالیت و
عملکرد فناوری نانو به زمینه, فعالیت و یا سیستم خاصی محدود نمیشود و می توان این فناوری را در تمام
علوم از جمله پزشکی, کشاورزی, علوم پایه, ژنتیک, هوافضا, الکترونیک, مواد و … به کار برد
1-1-3-استفاده از مواد لیگنوسلولزی در علوم و فناوری نانو
اساسا بسته به قابلیت دسترسی به علم و فناوری مورد نظر، هر ماده ای قابل تهیه در ابعاد نانو است. اما بعضی از
مواد به طور طبیعی دارای ریز ساختاری در حد ابعاد نانو هستند که یکی از این مواد که توسط طبیعت تولید میشود، سلولز است. امروزه فناوری نانو فرصتی مناسب برای استفاده از مواد لیگنوسلولزی جهت تولید محصولات جدید است. طی چند سال اخیر مطالعات و تحقیقات به منظور استفاده از منابع لیگنوسلولزی تجدیدشونده به منظور تولید نانوسلولز به دلایل زیر به شدت مورد توجه قرار گرفته است :
1- دارای مصارف غیر غذایی هستند
2- به طور گسترده قابل دسترس هستند
3- دارای قیمت پایین هستند
4- دارای سطوح واکنش فعال برای اتصال گروههای خاص هستند
5- به علت تخریب پذیر بودن در طبیعت باعث کاهش بار آلودگی می شوند (Favier و همکاران، 1995؛Dufresne و همکاران، 1999 ؛ Moon و همکاران ، 2006)
بر اساس نظر (Wegner و همکاران ، 2006) ، سلولز به دلایل زیر دارای پتانسیل مناسبی جهت تهیه مواد نانو می باشد:
1- دارای ساختار میکروفیبریلی در حد ابعاد نانو است
2- در طبیعت به طور گسترده یافت می شود
3- بر خلاف مواد غیر آلی مثل (فلزات) تجدید شونده است
4- عمل آوری و استفاده ازآن به دلیل نرم و غیر ساینده بودن راحت است
5- مصرف انرژی در فرایند تولیدآن پایین است
6- دارای مقاومت و مدول کششی بالایی است
از موارد کاربرد نانوسلولز می توان به استفاده در پوشش دهی کاغذ 2و تولید کاغذهای با کیفیت بالا، در صنایع بسته بندی 3, تولید انواع نانو کامپوزیت ها (پلیمرهای تقویت شده با ذرات نانو)، در تولید مواد غذایی،آرایشی، لوازم پزشکی و کاربردهای الکترونیکی نام برد .(Leino،2008)
1-4- سلولز
سلولز فراوانترین بسپار طبیعی و قابل تجدید در طبیعت است. برآورد می شود که سالیانه در حدود 100 بیلیون تن سلولز در طبیعت تولید می شود . این بسپار در دامنه وسیعی از گونه های موجودات زنده از قبیل گیاهان, جانوران, باکتری ها و برخی آمیبها دیده میشود. در اغلب این موجودات سلولز نقش استحکامی ایفا می کند. سلولز به دلیل خصوصیات فیزیکی و شیمیایی جالب توجه , قابلیت دسترسی و قیمت پایین آن, به طور وسیعی هم در حالت طبیعی آن و هم به عنوان ماده اولیه برای تولید کاغذ, صنایع غذایی و به عنوان افزودنی در داروسازی مورد استفاده قرار می گیرد. میزان سلولز در بافت های مختلف گیاهی از حدود 98 درصد در پنبه تا 40-50 درصد در چوب متفاوت است(Osullivan، 1997).
1-4-1-ساختار و مرفولوژی سلولز
سلولز یک بسپار همگن خطی است که تکپار تشکیل دهنده آن 1-4-D-β گلوکوپیرانوز می باشد (شکل 1-1) ملکولهای β گلوکز نسبت به یکدیگر چرخش 180 درجه ای دارند. در حین برقراری اتصال بین دو مولکول β گلوکز ازOH متصل به کربن شماره 4 یک مولکول و OH کربن شماره 1 مولکول بعدی یک مولکول آب جدا می شود و پل اکسیژنی بین آنها برقرار می شود. پیوستن دو مولکول β – گلوکز موجب تشکیل یک مولکول سلوبیوز می شود. هر 5 مولکول سلوبیوز با آرایش فضایی مکعبی شکل، بلور سلولز را بوجود م یآورند و از مجموعه بلورهای سلولز, رشته ابتدایی یا میسل سلولز تشکیل می شود.(Takashi،2007).
این زنجیر ها در طول سنتز به صورت میکروفیبریل سازماندهی می شوند. تعداد تکپار در هر زنجیر یا درجه پلیمریزاسیون (DP) بسته به گونه متفاوت است. در طبیعت زنجیرهای سلولزی بسته به منشاء دارای درجه پلیمریزاسیون گسترده ای در حد 1000 تا 30000 می باشند که طول زنجیره ای در حد 500 تا 1500 نانومتر را تشکیل می دهند (Ioelovich ، 2008). به عنوان مثال درجه پلیمرازسیون در سلولز چوب در حدود 6 تا 10هزار واحدگلوکوپیرانوز و در سلولز پنبه حدود 10 تا 15 هزار می باشد. در مولکول سلولز امکان برقرار

دسته‌ها: No category

دیدگاهتان را بنویسید